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Role of long jumps in surface diffusion
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We analyze a probability of atomic jumps for more than one lattice spacing in activated surface diffusion.
First, we studied a role of coupling between thex and y degrees of freedom for the diffusion in a two-
dimensional substrate potential. Simulation results show that in the underdamped limit the average jump length
^l& scales with the damping coefficienth as ^l&}h2sl with 1/2<sl&2/3, so that the diffusion coefficient
behaves asD}h2s with 0<s&1/3. Second, we introduced a realistic friction coefficient for the phonon
damping mechanism and developed the technique for Langevin equation with a velocity-dependent friction
coefficient. The study of diffusion in this model shows that long jumps play an essential role for diffusing
atoms of small masses, especially in two limiting cases, in the case of a large Debye frequency of the substrate,
when the rate of phonon damping is low, and in the case of a small Debye frequency, when the one-phonon
damping mechanism is ineffective.
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I. INTRODUCTION

A variety of phenomena in physics and other fields can
modeled as Brownian motion in an external periodic pot
tial @1–3#. One particular example, the surface diffusion
atoms or small clusters, is of great fundamental and tech
logical interest@4#. At low temperatures,kBT!«, wherekB
is the Boltzmann constant,T is the temperature, and« is the
height of the substrate potential, the diffusion proceeds
uncorrelated thermally activated jumps over the barrier fr
one minimum of the external potential to another, and
diffusion coefficient takes the Arrhenius form,D}A with A
5exp(2«/kBT). Then, if the jump rate is known, the diffu
sion coefficient can be found with the help of the lattice-g
model@5,6# for any symmetry of the lattice@7#. Usually it is
assumed that the atoms can jump to nearest neighbo
~NN! minima of the substrate potential only. In this case
diffusion coefficient is equal to

D5
1

2d
R^l2&, ~1!

whered is the dimensionality of the system (d51 or 2 for
surface diffusion!, R is the rate of escape from a potenti
well ~the sum of probabilities of the jumps from a given s
to all neighboring sites per one time unit!, and the mean-
square jump lengtĥl2& coincides with the square of th
lattice constanta2. To find the rate of atomic jumps, one ha
to study the diffusional dynamics, either by the molecu
dynamics~MD! method, or with the help of a more simp
approach based on the Langevin equation

mr̈1mh ṙ 1dV~r !/dr5dF~ t !, ~2!
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wherem is the atomic mass andV(r ) is the substrate poten
tial. In the Langevin equation~2!, the energy exchange be
tween the diffusing atom and the substrate is modeled b
viscous frictional force with the coefficienth and by the
random forcedF which corresponds to Gaussian whi
noise,

^dF~ t !dF~ t8!&52hmkBTd~ t2t8!. ~3!

A rigorous expression for the diffusion coefficient
known only in the overdamped limit,h@v0 @here v0
5(V9/m)1/2 is the frequency of atomic vibration at the min
mum of the substrate potential#, when the Fokker-Planck
Kramers~FPK! equation corresponded to the Langevin equ
tions ~2! and ~3!, reduces to a more simple Smoluchows
equation. An analytical solution is known for the on
dimensional~1D! substrate potential@8# and for the quasi-
two-dimensional case of a channel with periodically varyi
width @9,10#. An approximate solution was found also for
two-dimensional ~2D! substrate potential@11,12#. In the
overdamped limit the jump rate behaves asR}h21 and the
jumps are allowed for one lattice spacing only,l5a, so that
D}h21.

A typical situation in surface diffusion corresponds to
case of intermediate or low damping. In the case of interm
diate frictions,h&v0, the diffusion can be adequately de
scribed by the transition state theory~TST! @13#, wherel
5a and the total escape rate is given by the Kramers exp
sion @14# R'v0A/p which is independent onh, so thatD
}h0. This case was studied in a number of papers@15#.
Molecular dynamics predicts that there always exist atom
jumps longer than a unit lattice spacing,^l&.a, but the
increase in the jump length is approximately compensated
the decrease in the escape rateR because of ‘‘recrossings,’
when the atom after its jump to a NN potential well does n
stop ~thermalize! there but immediately jumps back to th
initial well ~the well of departure!, so that Eq.~1! still holds.

The present paper is devoted to an interesting case of
damping,h!v0, when long jumps may play a dominan
©2002 The American Physical Society07-1
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role. The problem of long~multiple! jumps, or flights, when
an underdamped Brownian atom jumps over many a po
tial barrier before getting trapped again, has been discu
in a number of papers@16–20#. According to the famous
Kramers work@14#, the escape rate at low damping is r
stricted by slow diffusion in energy space,R}h. On the
other hand, the probability of atomic jumps for many latti
constants is highly increased,̂l&;^vs&t, where ^vs&
;(«/m)1/2 is an average velocity of the atoms that cross
energy barrier« and t'h21 is the flight time, so that̂l&
}h21 ~for a more detailed discussion see Refs.@14,17,21#!.
Thus the diffusion coefficient should scale asD}h21 for
low damping. Analytical results are known for the 1D case
the h→0 limit only @1#. Numerical simulations are also to
time consuming in the low-damping limit.

Although experiments do demonstrate the existence
atomic jumps for several lattice constants@22#, a theory of
this phenomenon is still not too clear. There are two fact
that may significantly reduce the jump length. First, the s
face diffusion always takes place in the configuration sp
of two ~or three! dimensions. In the 2D space the path co
necting adjoining sites may not coincide with the direction
the easy crossing of the saddle point. Besides, the trajec
of a long jump which goes through several saddle points m
not correspond to a straight line. These effects have to red
the probability of long jumps@23,24#, so one could expect a
dependence

^l&}h2sl ~4!

with sl,1. Because the escape rate in a multidimensio
space should still behave asR}h ~see Ref.@25#!, we come to
the dependence

D}h2s ~5!

with s52sl21,1. In particular, Chenet al. @26# had
found with the help of numerical simulation for the 2D su
strate potential of centered-rectangular symmetry thas
50.5 which givessl50.75. Then, Carattiet al. @27# showed
that s is not universal but depends on a geometry of
substrate potential. They considered the 2D substrate po
tial of square symmetry without energy barriers~the ‘‘egg-
carton’’ potential! and found thats may vary from 0.76 to
0.64. A similar case of pure entropy barriers, when the at
diffuses in a channel of periodically varying width but with
out energy barriers, was recently studied in detail@10#. The
simulation showed that the dependence~5! with s,1 in fact
corresponds to a crossover region of intermediate frictio
At very low damping the diffusion coefficient again behav
as D}h21 analogously to the 1D activated diffusion wit
energy barriers. A width of the crossover interval, howev
depends on the shape of the substrate potential, so diffe
values of s may be obtained in this region. The case
activated jumps, when the energy barriers are large«
@kBT, is still unclear. In particular, the simulations@10# for
the activated diffusion in the channel of varying width pr
dicted the values51/3 which givessl52/3.

Second, long jumps may exist only in the case of lo
damping. Generally, there are three mechanisms of dam
06110
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which may be classified according to quasiparticles exc
in the substrate@28#. If the adsorbed atom has a nonze
charge, it creates plasmons in the substrate during the mo
~the electromagnetic damping mechanism!. When the ada-
tom is coupled with surface atoms of the substrate by che
cal bonds, so that their electronic clouds overlap, the ada
motion results in creation of electron-hole pairs in the su
strate~thee-h damping mechanism!. Both these mechanism
lead to h;1022v0 and approximately are independent o
the atomic velocity, because a frequency associated with
atomic motion is typically much lower than the plasmon fr
quency or the frequency corresponded to electrons on
Fermi level,v0!vpl , «F /\. Finally, there always exists th
phonon damping mechanism due to excitation of phonon
the substrate. The rate of this process is proportional to
density of phonon states in the substrate. Because the
quency associated with the adatom motionv0 may be of the
same order of magnitude as the maximum frequency
phonons in the substrate~the Debye frequencyvm), the pho-
non damping coefficienthph may strongly depend on th
atomic velocity. To study this effect, we have to develop
corresponding technique, because the standard appr
based on Langevin or FPK equations assumesh5 const.
Besides, due to the phonon mechanism, the total dam
coefficient may be large enough,h;v0, thus long jumps
will be completely suppressed.

The main goal of the present work is, taking into accou
both factors mentioned above, to find conditions when lo
jumps play an essential role in surface diffusion. The pape
organized as follows. First, in Sec. II we study diffusion f
different variants of the 2D substrate potential. The phon
damping mechanism is introduced in Sec. III A, and t
technique for solution of stochastic equations with t
velocity-dependent damping coefficient is developed in S
III B. Then in Sec. III C we study surface diffusion with
realistic damping. Finally, Sec. IV concludes the paper w
discussion of the results.

Throughout the paper we use dimensionless system
unit. The period of the substrate potential is taken asa
52p, the energy barrier for activated diffusion is«52, and
the mass of the substrate atoms isms51. The temperature is
measured in energy units (kB51). In all simulations we used
T51/3 which corresponds to activated diffusion («/T56 so
that A'2.4831023, RTST5v0A/p'7.8931024, and
DTST5

1
2 RTSTa

2'1.5631022) but allows us to achieve a
reasonable accuracy. The diffusion coefficient is calcula
from the solution of the Langevin equation~with the Verlet
or Runge-Kutta method, see details in Ref.@10#! by means of
the memory expansion method@29,30#, which avoids the nu-
merical evaluation of asymptotic slopes.

II. DIFFUSION IN A 2D EXTERNAL POTENTIAL

Let us begin with the study of a role of two dimensiona
ity of the substrate potential assuming that the damping
efficient h in Eqs.~2! and ~3! is constant. We consider sev
eral variants of the 2D potential. First, let the potential ha
a shape of a channel of periodically varying width,
7-2
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V~x,y!5
1

2
«~12cosx!1

1

2
mv1

2y2

1
1

4
m~v2

22v1
2!~12cosx!y2, ~6!

where we putv15v051 ~through this section we assum
m51), so that the atomic vibrations at the minimum of t
substrate potential are symmetric, and the parameterg5v1

2

2v2
2 controls the coupling of thex ~along the diffusion path!

and y ~the transverse direction! degrees of freedom. Forg
50 the modes are decoupled, and we come to the 1D s
soidal potential, V1D(x)512cosx. At g.0 the saddle
points are characterized by a smaller value of the transv
curvature than at the minima. The potential~6! describes a
quasi-2D diffusion of atoms adsorbed on ‘‘furrowed’’ su
faces such as the~112! surface of the bcc crystal, the~110!
surface of the fcc crystal, or the (1010̄) surface of the hcp
crystal, where the surface atoms create ‘‘channels’’ where
external atoms are adsorbed and along which they can m
Similar ‘‘channels’’ appear on the (231)-reconstructed
~100! surface of Si.

The simulation results for the dependence of the diffus
coefficient on the dampingh for a wide interval 1023<h
<5 and different values of the coupling between the mo
are summarized in Fig. 1. The diffusion coefficientD is nor-
malized on the exact value for the diffusion in the 1D sin
soidal potential in the overdamped limit@1#, DSmo1D

5D fI 0
22(«/2kBT), whereD f5kBT/mh and I 0 is the modi-

fied Bessel function. The overdamped limit was studied a
lytically in Refs. @9,10#. The coupling between the mode
produces the so-called entropy barriers. In the case ofg.0,
when the channel is wider at the saddle point than at
minimum, the entropy barrier is negative, so that it wor
against the energy barrier« and thus leads to an increase
the diffusivity. From Fig. 1 one can see that this effect
mains approximately the same for intermediate frictio

FIG. 1. Diffusion coefficientD normalized on the 1D over
damped valueDSmo1Das a function of the damping coefficienth for
the channel of varying width, Eq.~6!, for different values of the
transverse curvaturev2 at the saddle point.
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down to h*0.1. At lower damping,h,0.1, the 2D effects
lead to a qualitatively different behavior. While the 1D di
fusion coefficient slowly approaches theh→0 limit DR
5pD fA/2 ~see Ref.@1#!, so thatD/DSmo1D}hD tends to a
plateau, in the 2D case the valuehD continues to decreas
with h. The effect becomes strong enough for the coupl
g.0.75 (v2,0.5).

Now let us consider a pure 2D substrate potential
square symmetry,

V~x,y!5
1

2
«~12cosx!1mv1

2~12cosy!

1
1

2
m~v2

22v1
2!~12cosx!~12cosy!. ~7!

The potential~7! describes the atoms adsorbed on the~100!
surface of the bcc or fcc crystal. Along a diffusion path t
potential~7! is similar to the ‘‘channel’’ potential~6!, except
that now both directionsx andy are equivalent. The simula
tion results are plotted in Fig. 2. One can see that the beh
ior of the diffusion coefficientD(h) is similar to that of the
‘‘channel’’ potential ~6!, although the 2D effects begins t
play a role at smaller coupling between the modes. Alrea
for v250.75, wheng'0.44, the functionD(h) essentially
deviates from the 1D behavior at low dampingh,1022.

The functionsD(h) for two substrate potentials~6! and
~7! are compared in Figs. 3~a–c!, where the error bars ar
also plotted. One can see that at intermediate and large
tions,h.1022, these dependences almost coincide, altho
the diffusivity for the square lattice is slightly higher. More
over, at small damping (h,1022) and large enough cou
pling between the modes (v2,0.5 for the ‘‘channel’’ poten-
tial and v2,0.75 for the square potential! the functions
D(h) coincide as well within the accuracy of our simulatio
and behaves according to the power law~5! with s51/3. In
the case of square symmetry andv250.1 we made simula-
tion down to very small frictionh5531025 to see whether
there were changes in the slope. These low-friction data
support the evidence that the slope is close to 1/3.

FIG. 2. The same as in Fig. 1 for the 2D substrate potentia
square symmetry, Eq.~7!.
7-3
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FIG. 3. The dependence
D(h) for the channel~open dia-
monds! and square~solid dia-
monds! substrate potentials fo
different coupling between the
modes:~a! v250.5, ~b! v250.25,
~c! v250.1, and~d! the same for
the triangular substrate potentia
The lines show the low-damping
fit D(h)}h21/3. The dashed line
in ~d! describes the Chenet al.
@26# fit D(h)}h21/2 for an inter-
val of moderate damping.
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As a next example we consider the ‘‘most isotropic’’ tw
dimensional substrate potential, the one with the triangu
symmetry,

V~x,y!5
1

2 F12cosx cos
y

A3
1

1

2 S 12cos
2y

A3
D G . ~8!

The minima of the potential~8! are organized into the trian
gular lattice with the perioda52p. The atomic vibrations a
the minimum are symmetric,vx5vy5v051. The NN
minima are separated by saddle points with the barrie«
52. The maxima are approximately flat and produce
hexagonal~honeycomb! lattice. The transverse frequency
the saddle point is small,v251/A3'0.577. The potentia
~8! is widely used in studies of atomic layers adsorbed
isotropic triangular and hexagonal substrates@31,32# as, e.g.,
the~111! surface of the bcc crystal. The simulation results
the triangular substrate potential are presented in Fig. 3~d!.
Comparing the dependenceD(h) of Fig. 3~d! with those of
Figs. 3~a-c! for the potential with square symmetry, we s
that again they are qualitatively similar.

In the previous work@10# we found numerically that the
activated diffusion in the channel of varying width at smallh
can be fitted by the power law~5! with s51/3 both for the
06110
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n

r

case of wide barriers (g50.99) and the case of narrow ba
riers (g520.99). Figure 3 demonstrates that the same
true for pure 2D cases. Both the square potential~with dif-
ferent couplingsv2,0.75) and the triangular potential giv
the dependenceD}h21/3. This leads to the scaling~4! of the
jump length with the exponentsl5(11s)/252/3. In Fig.
3~d! we plotted also the fitD}h21/2 proposed by Chenet al.
@26#. One can see that such a dependence may be used f
interval of intermediate frictions only, 0.01,h,0.1, but it
cannot be considered as the low-damping asymptotic be
ior.

To study long jumps in more detail, we calculated t
distribution of jump lengthsP(l) and the escape rateR for a
fixed value of the damping coefficienth50.01. We assumed
that the atom is trapped in a given well if it has sojourned
this well for a time lapse not shorter than (2h)21 @17,19,21#.
The results are presented in Figs. 4 and 5. In agreement
the results of Refs.@17,21#, the distributionP(l) undergoes
a fast drop for short jumpsl5(2 –3)a and then approache
to a slower exponential decay. Surprisingly, this drop
much larger in the 1D system than in the 2D lattice w
strong coupling between the modes, the probability of jum
for several~2–5! lattice constants in the 2D system is mu
larger. The very long jumps (l.10a) are, however, sup-
7-4
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pressed in the 2D system, thus the average jump length^l&
decreases when the couplingg becomes strong enough. Ac
cording to Fig. 5,̂ l&'3.5a in the 1D case and decreases
^l&'3a at v2<0.5. The decrease in the jump length due
2D effects is, however, not too strong. Figure 5 demonstra
also that the escape rateR grows as the couplingg increases,
the escape from the 2D potential well is characterized b
higher probability.

From the simulation results presented above it beco
clear that the earlier results of Chenet al. @26# and Caratti
et al. @27# correspond in fact not to the low-dampin
asymptotic behavior but to a crossover region of interme
ate frictions. The results51/3 andsl52/3 obtained in the
present work, seems to be more close to the asymptotic
ues. A complete numerical study of the case of very l
damping (h,1023) is, unfortunately, too time consuming
However, in the case where we calculated down toh55
31025 the slope obtained aroundh51023 was confirmed.
To find an asymptotic behavior ofD and its multipliersR and

FIG. 4. Distribution of jump lengthsP(l) for a fixed damping
h50.01 for the triangular and square substrate potentials.

FIG. 5. Average jump lengtĥl& in units of a ~left axis, solid
diamonds, and solid curve! and the escape rateR ~right axis, open
diamond, and dashed curve! for the 2D lattice of square symmetr
as functions of the transverse frequencyv2 at the saddle point for
h50.01.
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^l& for small h, we calculated them separately for thre
values of the damping in the interval 1023<h<1022. The
results presented in Fig. 6 can be fitted by power la
R(h)}hsR and ^l(h)&}h2sl with different exponentssR
and sl . The escape rate exponentsR'0.9 is close to the
exact 1D valuesR51 which should not be changed for th
2D system@25#. A small decreasing ofsR from 1 can be
explained by a beginning of the crossover to the intermed
damping regime wheresR50 ~e.g., see Fig. 3 in Ref.@33#!.
The results for the exponentsl are, unfortunately, much les
definite. The simulation leads tosl;0.45–0.55 for the 2D
system, which is much lower than the valuesl52/3'0.67
predicted by theD(h)}h21/3 dependence.

Finally, we considered the case of a substrate potentia
hexagonal symmetry. Contrary to the potentials discus
above, in the honeycomb lattice the path connecting
next-nearest neighboring sites does not coincide with
straight line. Thus a ballistic motion corresponded to lo
jumps should be suppressed, and the average jump le
may be strongly reduced. We constructed the hexagonal
strate potential as a product of two triangular potentials
propriately scaled and shifted with respect to one anothe

V~x,y!50.64«S 3

2
2cos

x

A3
cos

y

3
2

1

2
cos

2y

3 D
3S 3

2
1cos

x

A3
cos

y1p

3
1

1

2
sin

4y1p

6 D . ~9!

FIG. 6. ~a! Average jump lengtĥl& and ~b! escape rateR as
functions of the damping constanth for the 1D case~open dia-
monds!, the square potential with strong couplingg50.99 ~solid
diamonds!, and the triangular lattice~solid triangles!. The lines de-
scribe the power-law fit.
7-5
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The minima of the potential~9! are organized in the honey
comb lattice as, e.g., on the graphite surface. The
minima are separated by the spacinga52p and the energy
barrier«52. The frequency of small-amplitude vibration
the bottom of the potential~9! is v0'0.98.

The simulation results for the dependenceD(h) are pre-
sented in Fig. 7. One can see that now at small frictionsh
,1022, the diffusion coefficient goes to a plateau,D}h0.
Such a behavior reminds us that of the intermediate dam
regime, when the TST operates. In the present case, how
the diffusion coefficient approximately does not depend
the friction because of the compensation of the decreas
the escape rate and the increase in the jump length as sh
in Fig. 8.

Thus the simulations predict thatsl is within the interval
1/2<sl<2/3. The following speculation leads to a conje
ture thatsl51/2 for all 2D systems where thex and y de-
grees of freedom are coupled. Indeed, if the 2D exter
potential V(x,y) is not separable, i.e., if it cannot be pr
sented in the formV(x,y)5V(x)1V(y), the Newtonian mo-
tion in the conservative system should be stochastic i
general case@34#. For some initial conditions the atomic tra
jectory is regular~e.g., the atom oscillates in the same pote
tial well or moves ballistically over the barriers!, for other
initial conditions the motion is chaotic and corresponds
anomalous diffusion@34,35#, ^r 2&}tn with 0,n,1. For the
atoms that cross the barriers and have energies within a
row ‘‘skin’’ layer close to «52, the atomic trajectories ar
close to the separatrix trajectory in the (x,ẋ) phase space, s
one could expect that these trajectories will be totally cha
and thus the motion will be pure diffusional,n'1. If we
now include the external damping, then in the limith→0 the
jumping atoms all belong to a thin skin layer of wid
;(hT)1/2 ~e.g., see Refs.@1,21#!, so their trajectories should
be close to the chaotic trajectories of the conservative sys
for times t,h21. Thus one could predict thatsl51/2 and
s50 in theh→0 limit.

This line of reasoning seems to work well for the case
the hexagonal honeycomb lattice, where straight trajecto
are not possible, while in the other cases our data indic

FIG. 7. Diffusion coefficientD versus the damping constanth
for the substrate potential of hexagonal symmetry~9!.
06110
N

g
er,
n
in
wn

al

a

-

o

ar-

ic

m

f
es
te

that D does not saturate ath→0, but it increases with an
exponents'1/3.

III. DIFFUSION WITH VELOCITY-DEPENDENT
DAMPING

A. Phononic damping

As was mentioned in the Introduction, the energy e
change between the moving atom and the substrate is ca
by the electromagnetic ande-h mechanisms which are ap
proximately independent on the atomic velocity, and by
phonon mechanism which strongly depends on the veloc
For a general atomic trajectory, the energy loss due to e
tation of phonons in the substrate can be found numeric
only by, e.g., the MD technique. However, for sma
amplitude vibrations of the atom at the bottom of the pote
tial well, the damping mechanisms have been studied in
tail theoretically as well as experimentally by differe
spectroscopic methods@28#. The rate of decay of the energ
of the atom vibrating with a frequencyv due to one-phonon
damping mechanism is equal to@28,36#

hph~v!5
p

2

m

ms
v2r~v!. ~10!

The local density of phonon stater(v) at the surface of a
semi-infinite crystal can in principle be calculated for a
crystalline structure. However, we will use an approxima
expression@36#,

FIG. 8. ~a! Average jump lengtĥl& and ~b! escape rateR as
functions of the damping constanth for the hexagonal potentia
~solid diamonds! and for the triangular lattice~open triangles!. The
lines describe the power-law fit.
7-6
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r~v!5
32

p

v2~vm
2 2v2!3/2

vm
6

, ~11!

which has the correct behavior in the limitsv→0 and v
→vm . The one-phonon damping mechanism operates
frequencies lower than the maximum~Debye! frequencyvm
only, and its rate is small at small frequenciesv!vm , where
hph(v)}v4. At v.vm the phonon damping is due to mu
tiphonon mechanism and is characterized by a value@28,36#
hph&1022v0. The functionhph(v), Eq. ~10!, achieves its
maximumhph'1.47vmm/ms at v5(4/7)1/2vm'0.76vm .

Although Eq.~10! describes the rate of phonon dampi
for the harmonic oscillations, one may expect that it will le
also to a reasonable accuracy for Brownian motion of ato
if we will use v;v0 for the atoms vibrating close to th
bottom of the potential well, andv;vwash[(2p/a)^v& for
the atoms flying over the barriers with an average veloc
^v& when the velocity oscillates with the washboard fr
quencyvwash. In the Langevin equation, however, we ha
to use a dependence of the damping coefficient on the ins
velocity of the atom@in a rigorous approach based on t
h(v) dependence, the diffusion will be non-Markovian a
the Langevin equation has to be replaced by a more com
cated integro-differential stochastic equation, see Ref.@2#
and references therein#. To couple the atomic velocity with
the frequency in Eq.~10!, we will use the relationshipv
5(2p/a)v. Thus in what follows we use the damping coe
ficient

h~v !5hmin1hph~2pv/a!, ~12!

where hmin describes the velocity-independent contributi
to the external damping~the total action of the electromag
netic, e-h and multiphonon damping mechanisms!, and
hph(v) is given by Eqs.~10! and~11!. In the simulation we
put hmin50.01 which is in agreement with the discussi
presented above.

The approach described above should lead to a good
gree of accuracy for fast atoms that cross many saddle
riers and correspond to long jumps, which is of the m
interest of the present work. As for atoms that move arou
well bottoms, their average velocity isv;vT5(T/m)1/2,
while the vibrational frequency isv05(«/2m)1/2. For the
parameters used in the simulations (T51/3 and«52) we
havevT'0.577 andv051 for m51. Thus the total damp
ing is close to the interval of intermediate frictions, whe
the TST operates and the escape rateR approximately does
not depend on the damping, so that the described appr
should lead to a correct description of the escape rate as

Because the standard technique of Langevin equation
sumes a constant damping coefficient, in the next subsec
we develop the technique for the case when the damp
depends on the velocity.

B. Langevin equation

In a general case the stochastic equation for a measu
variableqW [$ql% has the following form@37#:
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dql~ t !5Kl~qW !dt1(
m

Glm~qW !dwm~ t !,

^dwm~ t !&50, ^dwl~ t !dwm~ t !&5d lmdt, ~13!

where the first term in the right-hand side of the first equ
tion of the set~13! is called the drift term and describes th
action of the regular force, and the second term is called
diffusion term and describes the action of the random for
The set of equations~13! is equivalent to the Fokker-Planc
equation

] f ~qW ,t !

]t
52(

l

]

]ql
@Kl~qW ! f ~qW ,t !#

1
1

2 (
kl

]2

]qk]ql
S (

m
Gkm~qW !Glm~qW ! f ~qW ,t ! D

~14!

for the distribution functionf (qW ,t).
To obtain the Langevin equation~2!, we have to put in Eq.

~13! q15x and q25v ~to shorter notations, we consider
single atom with one degree of freedom only!, K1(x,v)
5v, K2(x,v)52h(x,v)v2V8(x)/m, and G115G12
5G2150. The unknown functionG22(x,v) in Eq. ~14!
is coupled with the random forcedF in Eq. ~2! by the
relationship dF(x,v,t)/m5G22(x,v)dw2(t)/dt, so that
^dF(x,v,t8)dF(x,v,t)&5m2G22

2 (x,v)d(t2t8). The corre-
sponding FPK equation takes the form

] f

]t
1v

] f

]x
2

V8~x!

m

] f

]v

5
]

]v Fh~x,v !S v1
1

2h~x,v !

]

]v
G22

2 ~x,v ! D f ~x,v,t !G .
~15!

The Maxwell-Boltzmann distribution f (x,v)} exp$
2@ 1

2mv21V(x)#/kBT% must satisfy Eq.~15!. Substituting it
into Eq. ~15!, we obtain the following equation on the un
known functionG22(x,v):

]G22
2 ~x,v !

]v
2

mv
kBT

G22
2 ~x,v !12h~x,v !v50. ~16!

It is easy to check that Eq.~16! has the solutionG22
2 (x,v)

52hR(x,v,T)kBT/m, where

hR~x,v,T!5E
0

`

dee2eh@x,ṽ~e!#,ṽ2~e!5v21
2kBT

m
e.

~17!

Indeed, from Eq.~17! we have
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kBT

mv
]hR~v !

]v
5

kBT

mv E0

`

dee2e
]h~ ṽ !

] ṽ

v

ṽ

5E
uvu

`

dṽe2e( ṽ)
]h~ ṽ !

] ṽ
. ~18!

Then, integrating by parts, we obtain

kBT

mv
]hR~v !

]v
52h~v !1

m

kBTEuvu

`

dṽe2e( ṽ)ṽh~ ṽ !, ~19!

or

kBT

mv
]hR~v !

]v
52h~v !1E

0

`

dee2eh@ ṽ~e!#

52h~v !1hR~v !, ~20!

which satisfies Eq.~16!.
Thus the random forcedF(t) in Eq. ~2! in the case of

velocity-dependent friction coefficient must be determin
instead of Eq.~3!, by the correlation function

^dF~ t !dF~ t8!&52hR~v !mkBTd~ t2t8!, ~21!

where the coefficienthR(v) is defined by Eq.~17!. If the
external damping does not depend on the velocity, we h
hR(x)5h(x), i.e., the standard expression for the rand
force in the Langevin equation.

The coefficienthR as a function of the frequencyv
52pv/a for different temperaturesT is presented in Fig. 9
One can see that a deviation ofhR(v) from h(v) is more
essential at small frequencies and becomes important
temperaturesT.1022mvm

2 (a/2p)2 only.

C. Simulation results

The rate of phonon damping@Eqs.~10! and~11!# depends
on the Debye frequencyvm which is a characteristic of the

FIG. 9. The coefficienthR(v), Eq. ~17!, which determines the
amplitude of the random force according to Eq.~21!, for different
temperatures.
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substrate. To study a role ofhph, we made simulations for
two values ofvm , for a realistic~in our dimensionless units!
valuevm510, and also for a quite small valuevm51 which
may correspond to a soft substrate with low-frequency p
non spectrum, when the phonon damping could be very
portant.

Because we fixed the mass of the substrate atoms in
dimensionless units (ms51), now we will vary the mass of
the diffusing atom in a wide rangem51022–102. In this
case the frequencyv05m21/2 changes from 10 to 0.1, s
even for the largest massm5100 we still havehmin!v0 and
may occur in the regime of small or intermediate friction.

Let us first consider the one-dimensional substrate po
tial. The dependence of the diffusion coefficientD on the
atomic massm is presented in Fig. 10, where the functio
D(m) for vm51 andvm510 are compared to that for th
case when the phonon damping is absent~the curve forvm
5` in Fig. 10, whereh5hmin50.01 so that the value of the
diffusion coefficient is close to theh→0 limiting valueDR
5pD fA/2'0.13/m). Also, in Fig. 11 we show the averag
jump length and the escape rate as functions ofm for the
same values ofvm .

Due to phonon damping the total friction coefficient i
creases. This leads to an increase of the escape rateR, but the
average jump lengtĥl& decreases, and the common acti
of both effects results in a decrease of the diffusion coe
cientD. Let us first consider a realistic case ofvm510 plot-
ted by open diamonds in Figs. 10 and 11. When the a
goes over the barrier, its energy is1

2 mv2;«52, so thatv
;2/Am. Thus, for the lowest massm51022 plotted in the
figures, a characteristic atomic frequencyv;20 is higher
than the Debye frequencyvm510, the one-phonon dampin
does not operate, the average jump length is large,^l&
.10a, and the diffusivity is high. Then, when the ma
increases within the interval 1022,m,1021, we havev
;20–6, so that the washboard frequencyv52pv/a pen-
etrates into the phonon zone, the one-phonon mechan

FIG. 10. Diffusion coefficientD ~times the massm) as a func-
tion of the atomic massm for the 1D sinusoidal substrate potenti
with different Debye frequencies:vm5` ~small open circles and
dotted curve!, vm510 ~solid diamonds and dashed curve!, and
vm51 ~open diamonds and solid curve!.
7-8
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starts to work, the damping sharply increases, goes thro
the largest valueh;1.47mvm;1 corresponding to the over
damped case, and then decreases down to values corres
ing to an intermediate-friction regime. Simultaneously t
jump length decreases tôl&;a, while the escape rate
grows as shown in Fig. 11. Then, with further increase of
mass in the interval 1021,m,102, the total damping corre
sponds to the intermediate-friction regime, so that the ju
length remains small,̂l&*a, and the escape rate and th
diffusion coefficient decrease withm, D}R}v0}m21/2.
Note that for large masses,m.10, the phonon damping co
efficient decreases back to the region of small frictions
cause ofhph}v4}m22, but the long jumps are still sup
pressed due to large mass of the atom.

A similar behavior demonstrates the ‘‘soft’’ substrate w
vm51 ~see open diamonds in Figs. 10 and 11!. Now the
one-phonon damping mechanism comes into play atm
'vm

2151. It is interesting that around this point, 0.3,m
,3, the diffusion coefficient remains as high as it was
the hph50 case. Although the jump length decreases
^l&;a, the escape rate sharply grows and compensates
decrease of̂l&.

Thus long jumps have to exist for a small mass of
diffusing atom,m,vm

21 , when the atom goes over the ba
riers so fast that the washboard frequency exceeds the m
mum phonon frequency of the substrate,v.vma/2p, and
the one-phonon damping does not operate.

Finally, let us study a common action of the phon
damping and the two dimensionality of the substrate pot
tial. We choose the substrate potential with the triangu
symmetry, a relatively small mass of the diffusing atomm
50.3 so that long jumps may be expected, and will vary
Debye frequency in a wide range 1021<vm<102. The
simulation results are presented in Figs. 12–14. As expec
the diffusivity is large and the long jumps exist in two r
gimes, for large values ofvm when the phonon dampin
coefficient is small, and for small values ofvm when the

FIG. 11. Average jump lengtĥl& and the escape rateR ~inset!
as functions of the atomic massm for the 1D potential withvm

5` ~small open circles and dotted curve!, vm510 ~solid diamonds
and dashed curve!, andvm51 ~open diamonds and solid curve!.
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one-phonon damping does not operate because of large
locities of atoms which cross the barriers. For intermedi
values of the Debye frequency,vm;3 –10, the jumps are
mainly for one lattice constant. Although the escape rate
high for these Debye frequencies, in total the diffusivity
lower than in the case of absence of phonon damping. H
ever, even in the worst case the probability of jumps lon
than one lattice constant is still not negligible,P(2a)/P(a)
.0.1, if the atomic mass is small,m,1.

IV. CONCLUSION

Thus in the present work we studied the role of lo
atomic jumps, or flights, in the activated surface diffusio
First, we analyzed the effects of two dimensionality of t
substrate potential, when thex andy degrees of freedom ar
coupled. Simulation results predict that in the underdam
limit the average jump length scales with the damping co
ficient aŝ l&}h2sl with 1/2<sl&2/3, so that the diffusion

FIG. 12. Diffusion coefficientD as a function of the Debye
frequencyvm for the substrate potential of triangular symmet
(m50.3, T51/3, andhmin50.01).

FIG. 13. Average jump length~left axes, solid diamonds! and
the escape rate~right axes, open diamonds! as functions ofvm for
the triangular substrate potential.
7-9
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coefficient behaves asD}h2s with 0<s&1/3. One can
make the conjecture that the dependenceD}h0 could be
universal in theh→0 limit for all nonseparable 2D substra
potentials. Our data support this conjecture only for the h
agonal symmetry potential, which has no straight diffus
paths, while for the other potentials, which have straight d
fusion paths, the exponents is close to 1/3.

Second, we proposed a realistic friction coefficient for t
phonon damping mechanism, which describes the energy
change between the diffusing atom and the substrate.
cause the rate of phonon damping strongly depends on
frequency associated with the atomic motion, we had to
velop the technique for Langevin equations with a veloci
dependent friction coefficient. The simulation of diffusion
this model showed that long jumps do exist in the case
adatoms of small masses,m,ms . The long jumps are the
most important in two limiting cases, in the case of a la
Debye frequency of the substrate, when the rate of pho
damping is low, and in the case of a small Debye frequen
when the one-phonon damping mechanism is ineffective,
cause the atoms cross the barriers with a high velocity. H
ever, in all cases the role of long jumps is not negligible. F
example, form50.3ms the number of jumps for two lattice

FIG. 14. Distribution of lengths of atomic jumps on the tria
gular lattice for a realistic velocity-dependent friction coefficie
Eq. ~12!, for different values of the Debye frequency.
e
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spacing substitutes more than 10% of the jumps to the
sites.

Thus, atomic jumps over a distance of 2 –3 lattice spac
are not negligible for most adsystems. The tw
dimensionality effects even increase the probability of su
jumps, although in total the average jump length decrea
the very long jumps are suppressed in 2D systems.
phononic damping which always operates in the case of
face diffusion, also does not kill long jumps ifm,ms . Thus
the approach based on the lattice-gas models of surface
fusion @38#, where the jumps to the NN sites are taken in
account, can often claim to qualitative description only. A
though it is easy to include multiple jumps in the LG mod
@39#, the increase of the number of poorly defined parame
makes such an approach not manageable.

Experimentally long jumps can be detected using surf
imaging techniques, when one makes ‘‘snapshots’’ of atom
configurations before and after an atomic jump. There
two techniques of this type, the field ion microscopy~FIM!
and the scanning tunneling microscopy~STM!. The FIM
method, unfortunately, operates only for adatoms which
not evaporate at huge electric fields (.108 V/cm). The
STM technique can in principle be used for any substra
adatom pair, but a speed of taking a snapshot is much slo
than in the FIM. For both experimental techniques o
should try to follow for the motion of a single adatom and
avoid collective effects due to interaction between adato
The most important is to choose the adatoms which can
penetrate into the substrate, because otherwise one ma
serve ‘‘fictitious’’ jumps over large distances as, e.g., in t
solitonic-exchange diffusion mechanism@40#. Probably,
namely such an effect was recently observed experimen
@41#.

Finally, we would like to mention an interesting case
diffusion of adsorbed clusters, for example, the practica
important situation of motion of Si2 dimers on the Si~100!
surface. In this case the energy exchange between the v
tional, rotational and translational degrees of freedom m
strongly affect the dimer diffusivity.
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